53 research outputs found

    Deep Learning based Real-time Recognition of Dynamic Finger Gestures using a Data Glove

    Get PDF
    In this article, a real-time dynamic finger gesture recognition using a soft sensor embedded data glove is presented, which measures the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint angles of five fingers. In the gesture recognition field, a challenging problem is that of separating meaningful dynamic gestures from a continuous data stream. Unconscious hand motions or sudden tremors, which can easily lead to segmentation ambiguity, makes this problem difficult. Furthermore, the hand shapes and speeds of users differ when performing the same dynamic gesture, and even those made by one user often vary. To solve the problem of separating meaningful dynamic gestures, we propose a deep learning-based gesture spotting algorithm that detects the start/end of a gesture sequence in a continuous data stream. The gesture spotting algorithm takes window data and estimates a scalar value named gesture progress sequence (GPS). GPS is a quantity that represents gesture progress. Moreover, to solve the gesture variation problem, we propose a sequence simplification algorithm and a deep learning-based gesture recognition algorithm. The proposed three algorithms (gesture spotting algorithm, sequence simplification algorithm, and gesture recognition algorithm) are unified into the real-time gesture recognition system and the system was tested with 11 dynamic finger gestures in real-time. The proposed system took only 6 ms to estimate a GPS and no more than 12 ms to recognize the completed gesture in real-time

    SyncDiffusion: Coherent Montage via Synchronized Joint Diffusions

    Full text link
    The remarkable capabilities of pretrained image diffusion models have been utilized not only for generating fixed-size images but also for creating panoramas. However, naive stitching of multiple images often results in visible seams. Recent techniques have attempted to address this issue by performing joint diffusions in multiple windows and averaging latent features in overlapping regions. However, these approaches, which focus on seamless montage generation, often yield incoherent outputs by blending different scenes within a single image. To overcome this limitation, we propose SyncDiffusion, a plug-and-play module that synchronizes multiple diffusions through gradient descent from a perceptual similarity loss. Specifically, we compute the gradient of the perceptual loss using the predicted denoised images at each denoising step, providing meaningful guidance for achieving coherent montages. Our experimental results demonstrate that our method produces significantly more coherent outputs compared to previous methods (66.35% vs. 33.65% in our user study) while still maintaining fidelity (as assessed by GIQA) and compatibility with the input prompt (as measured by CLIP score).Comment: Project page: https://syncdiffusion.github.i

    Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes

    Full text link
    We present Implicit Two Hands (Im2Hands), the first neural implicit representation of two interacting hands. Unlike existing methods on two-hand reconstruction that rely on a parametric hand model and/or low-resolution meshes, Im2Hands can produce fine-grained geometry of two hands with high hand-to-hand and hand-to-image coherency. To handle the shape complexity and interaction context between two hands, Im2Hands models the occupancy volume of two hands - conditioned on an RGB image and coarse 3D keypoints - by two novel attention-based modules responsible for (1) initial occupancy estimation and (2) context-aware occupancy refinement, respectively. Im2Hands first learns per-hand neural articulated occupancy in the canonical space designed for each hand using query-image attention. It then refines the initial two-hand occupancy in the posed space to enhance the coherency between the two hand shapes using query-anchor attention. In addition, we introduce an optional keypoint refinement module to enable robust two-hand shape estimation from predicted hand keypoints in a single-image reconstruction scenario. We experimentally demonstrate the effectiveness of Im2Hands on two-hand reconstruction in comparison to related methods, where ours achieves state-of-the-art results. Our code is publicly available at https://github.com/jyunlee/Im2Hands.Comment: 6 figures, 14 pages, accepted to CVPR 2023, project page: https://jyunlee.github.io/projects/implicit-two-hands

    COVID-19 and Employment in South Korea: Trends and Comparison with the 2008 Financial Crisis

    Get PDF

    Fine-Grained Socioeconomic Prediction from Satellite Images with Distributional Adjustment

    Full text link
    While measuring socioeconomic indicators is critical for local governments to make informed policy decisions, such measurements are often unavailable at fine-grained levels like municipality. This study employs deep learning-based predictions from satellite images to close the gap. We propose a method that assigns a socioeconomic score to each satellite image by capturing the distributional behavior observed in larger areas based on the ground truth. We train an ordinal regression scoring model and adjust the scores to follow the common power law within and across regions. Evaluation based on official statistics in South Korea shows that our method outperforms previous models in predicting population and employment size at both the municipality and grid levels. Our method also demonstrates robust performance in districts with uneven development, suggesting its potential use in developing countries where reliable, fine-grained data is scarce
    • โ€ฆ
    corecore